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CONVERSION FACTORS
NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement can be converted to SI (metric) units as follows:

Multiply By To Obtain

inches 25.4 millimeters

feet 0.3048 meters

pound 4.44822 Newton

pounds per square inch 6.8948 kiloPascal

square inches 645.16 square millimeters




Chapter 1 INTRODUCTION

This report documents the first step in development of a preliminary analytical model for
flexible pavement analysis for the Airfields and Pavements Division (APD) of the
Geotechnical Laboratory at the US Army Engineer Waterways Experiment Station. This first
step may be generally described as development of a linear elastic finite element model that
reasonably compares with the empirical and/or layered elastic solutions in current use. This
report does not attempt to document a literature survey related to pavement analysis nor does
it discuss the background of previous pavement analysis methods or finite element methods
beyond that necessary for understanding of the problem at hand. Further, this study attempts
to determine the optimal usage of the specific tools at hand, i.e., PATRAN (1993) and
ABAQUS (1992), in development of the improved analytical model. It does not attempt to
generalize to other finite element modeling tools or the broad finite element method. This
report includes and builds upon previous work done by the author in this area (Bryant, 1996).

The rationale and impetus for development of a detailed analytical model rests in the
limitations of current pavement design and evaluation procedures. Current design procedures
are very much empirical and are based on a limited number of tests conducted decades ago.
Current and future wheel loadings and configurations and potential pavement systems differ
considerably from the empirical basis in many cases and thus may not be easily handled by
these procedures. Further, the most common current analytical tools based on the Layered
Elastic Method are limited by the assumptions of this method which include (1) linear elastic
material, (2) circular, static, constant pressure wheel loads, and (3) fully bonded interfaces
between pavement layers. A more detailed analytical model is required to overcome these
limitations.

The goal of this study is to provide a baseline, or starting point, for development of a
detailed analytical model for flexible pavements. As such, the present development identifies
the current methods of analysis, constructs reasonable baseline cases for analysis, and
compares key results of these baseline cases as predicted by the current methods and the
finite element method. The finite element models are constructed to mimic the basis and
assumptions of the current methods of analysis to provide the most reasonable comparison of
the results possible, i.e., to compare apples to apples.

In this report we describe the approach, baseline models, two- and three-dimensional
finite element models, and compare the key results of the current and finite element analyses.
Further, the effect of several variables or options in the finite element analysis models are
investigated via a limited parameter study using the two-dimensional (axisymmetric) finite
element model. This parameter study provides some insight as to future development of
rational finite element models for general application. Finally, this report draws conclusions
as to what this study has accomplished and presents recommendations as to what is
appropriate for the next steps in the development of the detailed analytical model.
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Chapter 2 BASELINE MODELS

Three baseline cases, each involving a different type aircraft, were selected for
comparing the results of the different analytical methods. The general parameters relating to
number of pavement layers; surface course, base course, and subgrade materials; as well as
loadings, were taken to be representative of at least some of the wide (some would say
infinite) range of values in the real world. These general parameters were used to determine
the actual pavement layer thicknesses for the analyses. In addition, several key response
parameters were identified as figures of merit for comparing the results of the different
analyses. The various parameters of the baseline cases are described in the following

paragraphs.

2.1 LAYERS AND MATERIALS

Each of the three baseline cases considers a three-layer system consisting of an asphaltic
concrete (AC) surface course and an unbound base course (BC) overlying the subgrade. For
purposes of the analyses, the layers are considered fully bonded, i.e., there is 100 percent
friction at the layer interfaces. The surface layer was taken with an elastic modulus, E, and
Poisson’s ratio, v, of 250,000 psi and 0.3, respectively, to represent a typical asphaltic
concrete. The second layer utilized a modulus and ratio of 90,000 psi and 0.33, respectively,
to represent a typical unbound base course. Finally, the modulus and ratio for the subgrade
was taken as 6,000 psi and 0.45. Typical mechanical properties and specific values used in
the analyses for these three layers are summarized in Table 2.1.

Table 2.1. Materials for baseline cases.

Layer Emin (0si) | Emax (psi) | Etyp (psi) © v
1 | Asphaltic concrete 105 106 250,000 0.3
2 | Base 40,000 150,000 90,000 0.33
3 | subgrade - - 6,000 0.45
$ typical properties used for baseline cases

22  WHEEL LOADS AND LAYER THICKNESSES

Each baseline case considered a single wheel load from a different aircraft. The three
aircraft were selected to represent a wide range of contact areas, standard loads, and design
tire pressures. Specifically, the three aircraft considered in these cases were the C-141
transport, the Boeing B-727, and the F-15 fighter. The C-141 is very heavy, having twin
tandem gear with moderate wheel spacing. The B-727 is somewhat lighter with more closely
spaced twin gear. The F-15, though relatively light, has single wheel gear with very high tire
pressure.
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The aircraft specifications were determined from the Pavement Computer Aided
Structural Engineering (PCASE) computer program (NEWFILE, 1994). The C-141
transport, with a standard load of 345,000 lb., two main gear with four tires per gear, and a
tire contact area of 208 sq. in., results in a design tire pressure of 186.6 psi. The B-727, with
a standard load of 210,000 Ib., two main gear with two tires per gear, and a tire contact area
0f 237 sq. in., has a design tire pressure of 199.4 psi. The much lighter F-15, with a standard
load of 68,000 Ib., has only one tire with a relatively small contact area of 87 sqg. in. for each
of the two main gear, resulting in a high tire pressure of 340 psi. Thus, the three aircraft
considered encompass a wide range of wheel loads and tire pressures.

The required thicknesses of the surface course and base course were determined from the
Aircraft Specification Data (computer program FAD, 1994) based on 50,000 passes, non-
frost design, CBR 100 base material and CBR 4 subgrade material for Traffic Area A. The
computed layer thicknesses for each aircraft for the given conditions are summarized in Table
2.2. The FAD calculations indicated a required surface layer thickness of 4 inches and a base
course thickness of 49 inches for the heavy, but low tire pressure, C-141 aircraft. The surface
and base course thicknesses required for the somewhat lighter B-727 were 3 inches and 43
inches, respectively. The F-15, with a much lower load but high tire pressure required a 4-
inch surface layer with only 24-inch base course.

Table 2.2. Computed layer thicknesses for baseline cases.

(50,000 passes, no frost, CBR 100 base, CBR 4 subgrade, Traffic Area A)

Aircraft | Design Load tire pressure | Surface Base Total
db.) (psi) (in) (in) (in)
C-141 345,000 186.6 4 49 53
B-727 210,000 199.4 3 43 46
F-15C/D | 68,000 340.0 4 24 28

23  FIGURES OF MERIT

Six computed results of the analyses (response parameters) of the baseline cases were
selected to provide figures of merit for comparison of the methods. These selected results are
summarized in Table 2.3 as primary (most important) and secondary (less critical). The
primary comparative results include the vertical deflection at the surface under the wheel
load, the tensile horizontal strain at the bottom of the surface layer (AC), and the vertical
strain at the top of the subgrade. These three parameters are the most commonly used
parameters for evaluation of pavement design. The three secondary results (principal
stresses) are less commonly used in design but are of interest here due to their
characterization of the stresses existing in each layer. These outputs and their locations are
depicted in Figure 2.1. These six parameters are compared (as available) for each of the

analysis methods.




Table 2.3. Outputs for comparison.

Primary Secondary
vertical deflection under load principal stresses at center of AC
tensile horizontal strain at bottom of AC | principal stresses at center of base course
vertical strain @ top of subgrade principal stresses at top of subgrade

}\2 AC layer

I——d3
Legend
Q  vertical displacement
BC layer 3 principal stresses
xq_ [T horizontal strain
D vertical strain

gl
E 6 subgrade

Figure 2.1. Location of comparative analysis results.




Chapter 3 COMPARATIVE STUDY OF ANALYTICAL MODELS

3.1 GENERAL APPROACH

This study considered four methods of analysis for the baseline cases  described
previously. These methods include a closed form solution (Boussinesq), elastic flexible plate
on subgrade, the most commonly accepted current approach (Layered Elastic Method or
LEM), and the Finite Element Method (FEM). The results of the LEM analyses provide the
basis of comparison for the FEM. Each of the three former solution methods and the results
of the analyses are briefly described in the following sections. Subsequent sections describe
the finite element analyses and compare FEM results with the previous solutions.

For comparison with the two-dimensional finite element solution, the analyses consider
a single wheel loading acting at the surface of the pavements described in Tables 2.1 and 2.2,
reporting the key results described in Table 2.3 (as available). The three-dimensional finite
element model results include comparisons for single and dual wheel loadings with
equivalent Layered Elastic Method solutions.

3.2  BOUSSINESQ SOLUTION (CLOSED FORM)

This closed-form solution considers a point load on a semi-infinite elastic half-space and
predicts the vertical stress in the half-space at a depth z, and radial distance r, from the load P.
This stress prediction is independent of elastic modulus E. Obviously there are two
assumptions in this prediction that violate even the simplified assumptions inherent in the
Layered Elastic Method solutions, specifically, (1) the load is concentrated at a point instead
of over a circular area, and (2) only a single homogeneous elastic layer is considered instead
of the multiple elastic layers used in the LEM analyses.

The general equation for the Boussinesq solution is (Yoder and Witczak, 1975)

P
c.=k—

z (3.1a)

where:

- -

PR N S 3.1b
T 2n 2N\ 3 (3.1b)
Ia
(1+(—) J
- Z -
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r =radial distance from point load
z =depth
P =total load at surface

For r = 0 (beneath point load)

L3
T 2on
P P
c, = g = 0.47752—2 (B.2)

thus the vertical stress is an inverse quadratic function of depth z, proportional to load P. The
vertical stress under the load (r = 0) is plotted versus depth in Figure 3.1 for the three subject

aircraft loadings.
Boussinesq Solution

350 N B

|
{ e
300 - o C-141
TN . j—e—B-727

250

li —a F-15
|

I
'\

5 \\“\ |

depth z, inch

vertical stress, psi

Figure 3.1. Boussinesq solution for vertical stress.

Note that the Boussinesq solution predicts extremely high stresses near the surface, due
to the assumption of a point load. In fact, Equation 3.2 shows that the stress approaches
infinity as depth, z, approaches zero (at the surface). Obviously, this is a serious limitation to
application of the method or use of the predictions for tire pressures that vary from 187 psi
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for the C-141 to 340 psi for the F-15. Further, this closed form solution is not dependent on
the presence of different layers or the absolute or relative stiffnesses of the layers.

33 FLEXIBLE PLATE SOLUTION

A solution for a single, circular flexible plate loaded over an elastic half-space is
presented by Huang (1993). The relatively straightforward equations are easily solved in a
spreadsheet for vertical and radial stresses and strains. Vertical deflection under the load can
be computed if constants are presumed for Young’s modulus and Poisson’s ratio (single
elastic layer). The equations for vertical (z) and radial (r) stress are:

23
c.=4q 1————(a2 ) (3.32)
q 2(1+v)z z

where:

a =radius of loaded circular area
q = vertical pressure at surface
v = Poisson’s ratio

and other terms are as previously defined.

The vertical stress predictions for the three aircraft cases are presented in Figure 3.2.
Note that the stress predictions are much more reasonable than those of the Boussinesq
solution, which presumed a single point load.

3.4 LAYERED ELASTIC METHOD

The three baseline cases for a single wheel load were analyzed using BISAR to
determine the output parameters of interest in Table 2.3 for comparison with subsequent two-
and three-dimensional finite element analyses using ABAQUS. Each case was analyzed
using the parameters in Table 2.1 for the materials in each layer and the design pavement and
base course thicknesses in Table 2.2. These analyses presumed fully bonded interfaces
between the layers, and a circular loaded area equal to the total single wheel load divided by
the tire pressure. Outputs were requested at the locations directly beneath the wheel (x=y=0)
for the depths corresponding to the locations in Table 2.3. The vertical stresses determined
from these analyses, shown in Figure 3.3, are generally similar to those from the previous
flexible plate solution.
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vertical stress, psi

vertical stress, psi

Flexible Plate Solution

350.0 ; ,
i 5 ;
300.0 — o C-141 -
\ i | ——BT27,
250.0 | P15
| |
200.0 :

\
AN |

| i
100.0 \ : 5

i

50.0 i
|

|

0 10 20 30 40 50 60
depth z, inch
Figure 3.2. Flexible plate solution for vertical stress.
Layered Elastic Solution
350.0 :
\NE
3000 ~ o G141
250.0 ? L ——F15 |
i : [ —
2000 \\
150.0 F\c\*\ '
100.0 \\
50.0 M
0.0 \\\ ) an
0 10 20 30 40 50 60

depth z, inch

Figure 3.3. Layered elastic solution for vertical stress.




The comparison set of results described in Table 2.3 and Figure 2.1 for the single wheel
loading are summarized in Table 3.1 below for the three cases.

Table 3.1. Layered elastic results for comparison.

Selected Results C-141 B-727 | E-15C/D

Description point unit

vertical displacement at top 0.0479 | 0.0628 | 0.0582 |in : .
horiz. strain at bottom of AC 263 148 557 |micro-strain
vertical strain at subgrade -241 -386 -627  |micro-strain
max. prin. stress - AC center -109 -150 -144  |psi

min. prin. stress - AC center -178 -197 -300 |psi

max. prin. stress - BC center
min. prin. stress - BC center
max. prin. stress - subgrade
min. prin. stress - subgrade

26.2 3.75 8.25 |psi
-16.4 -25.9 -34.6 |psi
-0.178 -0.299 -0.434 |psi
-1.6 -2.59 -4.16 |psi

| bIDININ]|Owf -

Note that the minimum principal stresses in the asphaltic concrete, which correspond to
the vertical stresses, are appropriate to (slightly less than) the vertical tire pressures for the
subject aircraft. Thus, the predicted stresses at any depth are less than those from the
Boussinesq solution, as were those from the flexible plate solution. These results form the
basis for comparison with the subsequent two-dimensional finite element analyses.

3.5  FINITE ELEMENT ANALYSIS

Finite element analyses for the three baseline cases were developed using procedures and
methods typical to most general finite element analysis programs. The goal of the initial set
of finite element analyses was to model the procedures and assumptions inherent in the
Layered Elastic Method and thus to validate the ability of the FEM to match the results from
the LEM. From this validation, the considerable power and versatility of the FEM can be
exploited by expansion to consider more realistic modeling of the materials and loadings.

The finite element models for the three baseline cases are based on the following assumptions
consistent with the LEM analyses:

1. The material is linear elastic.
2. Interfaces between the layers are fully bonded (no slip).
3. Loading is a constant pressure over a circular area and is static.

The finite element analysis was carried out using the PATRAN software for pre- and
post-processing and the ABAQUS finite element software for the analysis. The PATRAN
software, running on the SGI and Sun workstations in the APD, provides a reasonably simple
and rapid method for developing the input for ABAQUS and for inspecting and visualizing
the output results. Specifically, the output deflections, strains, and stresses desired for
comparison, described in Table 2.3, were extracted using the cursor tool option in the
INSIGHT application in PATRAN. These selected results were tabulated for comparison
with the baseline results of the Layered Elastic Analyses described previously.




3.5.1 Two-Dimensional (Axisymmetric) Model
3.5.1.1 General formulation.

The axial symmetry of the single-wheel loading and model (pavement, base course, and
subgrade) permits a simplified analytical model, specifically using axisymmetric two-
dimensional solid elements with no loss in accuracy. By taking the axis of symmetry
vertically through the loaded area, the finite element model need model only oné sector of a
“cylindrical” volume of the pavement layers and subgrade, as indicated in Figure 3.4.
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Figure 3.4. Axisymmetric model.

3.5.1.2 Materials and loading.

This model uses the material constants defined in Table 2.1 and the thicknesses of AC
and BC defined in Table 2.2. Note that Young’s modulus and Poisson’s ratio are the only
required material properties for a linear elastic material model. The loadings are taken as
single wheel tire pressures for the subject aircraft, acting over a circular area derived from the
ratio of the single wheel load to the tire pressure.

3.5.1.3 Boundary conditions.

The finite element analysis, as the name implies, generally models only a finite portion
of the pavement and soil continuum. Thus, the extent of the model in the horizontal (in this
case radial) and vertical directions must be specified a priori. The distance to these side and
bottom boundaries has a direct effect on the “accuracy” of the results and the computational
effort required for the solution. Specifically, the wider and deeper the finite element model is
constructed, the more the solution results will approach those of an unbounded continuum.




This increase in solution fidelity comes at the cost of additional computational effort
(computer time). Typical geomechanical analyses try to achieve reasonable balance between
accuracy and computational effort.

For the purposes of the initial validation analyses, the location of the side and bottom
boundaries of the model were selected based on the geometry of the assumed loading (radius,
r) and the depth to subgrade (AC + BC thicknesses). Specifically, for each case considered,
the radial distance to the side boundary was taken as the larger of 10 times the load radius or
2 times the depth to subgrade. Similarly, the “bottom” of the finite element model was taken
at twice the depth to subgrade, i.e., a thickness of subgrade equal to that of both pavement
layers was considered in the model. These boundary locations, though rather arbitrary, are
not inconsistent with typical finite element analyses and extend the model in each direction
well away from regions of high stress. At these boundaries, the displacement normal to the
boundary was assumed zero (fixed). In other words, the horizontal displacements along the
side boundaries and the vertical displacements along the bottom boundary were fixed. By
symmetry, the horizontal displacements along the axial line of symmetry are identically zero.
Displacements parallel to the boundaries were left free to permit motions in that direction.

3.5.1.4 Finite element mesh.

The other key decision required for finite element analysis of a continuum is the
selection of the mesh fineness, i.e., how many elements are to be used to subdivide the
model. In general, a more refined mesh (more smaller elements) yields more accurate results
at the expense of higher computational effort than a coarser mesh. Similarly, the use of
higher order elements generally increases accuracy but requires more effort than using lower
order elements. For the baseline validation models, a generally fine mesh of lower order
elements (4 node 2-D solids) was utilized. The mesh was subdivided into six regions, or
surfaces, corresponding to the geometry of the load and the layer thicknesses (3 layers,
loaded and unloaded surface). The baseline meshes are shown for the C-141, B-727, and F-
15 analyses in Figures 3.5, 3.6, and 3.7, respectively. In each case, the mesh consists of very
small elements, each with an aspect ratio close to unity (square).




Figure 3.5. Baseline finite element mesh for C-141 analysis.

The orientation of these meshes is similar to that shown previously in Figure 3.4, i.e., the
axis of symmetry is the left boundary of the mesh and the upper edge is the free surface. The
right and lower boundaries are restrained normal to the boundary. In each mesh, the extent of
the wheel load is indicated on the pavement surface extending from the axis of symmetry to

the equivalent radius of the contact area.
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Figure 3.6. Baseline finite element mesh for B-727 analysis.

Figure 3.7. Baseline finite element mesh for F-15 analysis.




3.5.1.5 Two-dimensional finite element analysis results.

Although it is quite straightforward to extract and view the finite element results for a
particular analysis in PATRAN, it does not lend itself to direct comparison of results between
analyses or with the results of the Layered Elastic Method analyses. Thus, the particular
finite element results to be compared were extracted using the cursor tool in the INSIGHT
application in PATRAN and tabulated externally. The first method of comparison employed
was to consider the ratio of the results of the finite element method (FEM) to the Layered
Elastic Method (LEM). This ratio (FEM/LEM) for each figure of merit described previously
in Table 2.3 is presented in tabular form in Table 3.2 for the baseline analyses of the three
aircraft.

Table 3.2. Ratios of selected baseline FEM and LEM results.

Layer| top/ [Description FEM FEM/LEM

center/ definition baseline cases
bottom C-141 B-727 F-15
1 top |vertical displacement dy 0.59 0.56 0.52
~1-3 | relative |relative displacement d-dy 1.02 1.02 1.01
1 bottom |horizontal strain ex 1.13 1.39 1.10
3 top |vertical strain ey 0.85 0.84 0.85
1 center [horizontal stress sig-x 0.96 0.95 0.91
1 center |vertical stress sig-y 1.02 1.02 1.00
2 center |horizontal stress sig-x 0.75 0.75 0.68
2 center |vertical stress sig-y 1.01 1.01 1.02
3 top |horizontal stress sig-x 5.17 483 5.14
3 top |vertical stress sig-y 1.28 1.26 1.25

The initial four columns in Table 3.2 describe the location (layer number and whether
top, center, or bottom of layer) and the type of result (displacement, strain, or stress). With
the exception of an additional parameter (relative displacement), these output parameters are
ranked in order of interest as previously described in Table 2.3. The three columns to the
right are the FEM/LEM ratios of the results for the different baseline cases. Obviously, the
closer these ratios are to unity is an indication that the FEM results are approaching the LEM

results.

Several observations become obvious from these results. First, results are generally
consistent between the different aircraft loadings, i.e., the ratio is about the same for each of
the three analyses for any particular output. Second, many of the ratios are reasonably close
to unity, indicating a fair level of agreement between the FEM and LEM analyses. These two
general observations provide some level of confidence in the results of the finite element
analyses, at least in comparison to the LEM results.

Looking at particular FEM/LEM comparisons provides insight as to the accuracy with
which this particular finite element model predicts that result. For example, the prediction of
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vertical displacement at the surface appears very poor in the FEM, with FEM/LEM ratios of
only 0.52 to 0.59. In other words, the surface deflection predicted by the finite element
analysis (for these models) is only about 50 to 60 percent of that predicted by the LEM. The
FEM prediction of vertical displacement very much depends on the location of the lower
boundary, since elastic deformation below this level is not included in the finite element
model. This observation is confirmed by the second comparison in the table which compares
the relative vertical displacement between the surface and the top of the subgrade (layer 3).
As seen in the table, the relative displacement predicted by the FEM is essentially identical to
that predicted by the LEM.

The prediction of horizontal strain (tension) at the bottom of the AC layer is quite
reasonable for two of the three cases with a larger difference for the B-727 analysis. This
larger difference may be due to the 25 percent thinner AC layer in the B-727 pavement
system. The prediction of vertical strain at the top of the subgrade is extremely consistent
and is about 85 percent of the LEM prediction.

The prediction of principal stresses (identically horizontal and vertical) is fairly good to
excellent in the upper two layers, especially for the vertical stresses. While the prediction of
vertical stress at the top of the subgrade (layer 3) is reasonable, the horizontal stress at this
location is predicted poorly. Note that this horizontal stress is predicted as tension in both
analysis methods (e.g., see Table 3.1), a result that does not reflect reality in the base and
subgrade layers. Since the prediction of horizontal stress becomes consistently poorer with
depth, it is suspected that this result reflects an influence of the bottom boundary on the
horizontal stress (which is identically zero at the bottom boundary in the FEM). We expect
that the difference in results is also at least partially attributable to the location of the side
boundary. It should also be pointed out that the predicted stress levels in the subgrade are
about 2 orders of magnitude less than in the AC layer.

Due to the significant difference in order of magnitude of results at different locations, a
more meaningful comparative measure was developed and employed for subsequent
comparisons. Specifically, the difference between the results of the finite element method
(FEM) and Layered Elastic Method (LEM) was normalized as :

A= Xrme TXimn 000 (3.4)
XLEM max
where:
A = normalized percent difference
X = result variable being compared
Yrem = finite element method result
Xuem = layered elastic method result (baseline)

Yiem_ = Maximum or characteristic magnitude of the result variable
max
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This normalized comparator essentially applies a scale factor to the comparison that
accounts for the significant magnitude of the variable under consideration. For example, the
more simplified ratio (FEM/LEM) used in Table 3.2 to compare the results sometimes
appears to indicate large discrepancies between the solutions where the magnitude of the
result is relatively small. In the normalized comparator, a small difference in a relatively
small value is compared with reference to a relevant magnitude of some significance. The
results presented in Table 3.2 are shown in Table 3.3 using this normalized comparator.

Table 3.3. Normalized comparison of selected baseline results.

Layer top/ |Description FEM A

center/ definition baseline cases

bottom C-141 B-727 F-
1 top vertcal displacement ay -40.9 -44.4 -48.3

1-3 relative displacement d-dy 0.7 0.6 0.2

1 bottom [honzontal'strain ex 13.3 38.5 9.7
3 top |vertical strain ey -15.4 -16.5 -16.3
1 center [honzontal stress sIg-x 2.1 4.0 3.8
1 vertical stress sig-y -1.6 -2.0 -0.4
2 center [hornizontal stress SIg-X -0.3 -0.5 -0.8
2 vertical stress sig-y -0.1 -0.2 -0.2
3 top honizontal stress Sig-X -0.4 -0.6 -0.
3 vertical stress sig-y -0.2 -0.3 -0.3

These results confirm that the predicted vertical displacement at the surface is 40 to 50 %
lower than the LEM prediction but the relative displacement in the top two layers is less than
1% different. The horizontal and vertical strains are somewhat over-predicted and under-
predicted, respectively, and the relative stress predictions are quite good.

In a somewhat reverse comparison of results between the Layered Elastic Method and
the Finite Element Method, a modified BISAR analysis was conducted that more closely
modeled the bottom boundary condition of the baseline finite element model for the B-727
wheel load and pavement system. In this case, an extremely stiff layer (E = 10® psi) was
added at a depth of 92 inches (bottom of finite element model). The results from this BISAR
analysis are compared to the baseline B-727 finite element results in Table 3.4, showing both
the ratio (LEM/FEM) and the relative normalized difference, A. This comparison clearly
shows the effect of the stiff lower layer (boundary) in the BISAR results. When this

constraint is placed in the LEM model, the results compare very favorably with those from
the finite element model. In particular, the predictions of vertical displacement agree within
a few percent for these models which are more comparable as to vertical constraint. Note
that the LEM model still assumes an elastic continuum in the horizontal direction, whereas
the FEM model is restrained at a distance of 88 inches.




Table 3.4. Comparison of FEM and modified LEM results for B-727.

Layer| top/ [Description B-727
center/ FEM FEM| BISAR[LEM/ A
bottom definition Value| modified FEM
1 top |vertical displacement ay 0.0349] 0.0371 1.06 6.3
1-3 | relative |relative displacement| d-dy 0.0246] 0.0244 0.99 -0.8
1 bottom [horizontal strain ex 205 173 0.84} -15.
3 top [vertical strain ey -326 -400 1.23 22.7
1 center |horizontal stress sig-x -142 -141 0.99 0.5
1 center (vertical stress sig-y ~201 -197 0.98 2.0
2 center |horizontal stress sig-X 2.8 3.76 1.34 0.
2 center |vertical stress sig-y -26.2 -26.5 1.01 -0.2
3 top |honzontal stress sig-X -1.45 -1.42 0.98 0.
3 top |vertical stress ) sig-y -3.26 -3.68 1.13 -0.2

In general, the finite element models predicted most of the results of interest with
reasonable agreement with the LEM. The vertical displacement at the surface is quite under-
predicted when compared with a semi-infinite elastic continuum, but this is due to the
location of the lower boundary (where the displacement is constrained). This effect was
confirmed by review of the relative displacement in the upper two layers and by the LEM
analysis with a very stiff (nearly fixed) layer. The other result with the largest relative
discrepancy in prediction is the horizontal stress at the top of the subgrade. This prediction is
probably affected by the location of both the bottom boundary and the side boundary in the
finite element model. By St. Venant’s theorem we would expect the effect of these
boundaries to be more noticeable as they are approached. These suppositions and the effect
of the boundaries are investigated in the parameter studies described in the following section
of this report.

3.5.1.6 Two-dimensional parameter study.

Prior to, and during the course of the two-dimensional finite element analyses, we
' recognized several parameters relevant to the finite element modeling technique that would
be good candidates for at least a brief review of their effect on the results. First, the fineness
and type of mesh utilized for a given model dimension likely has some effect on the
“accuracy” of the predicted results. Second, the modeling of the bottom and side boundaries
(location and boundary condition) also has some effect on the predicted results. An
additional parameter not considered in the baseline LEM analyses but available to the finite
element model is the difference in compressive and tensile response of the different materials
in the structure. A brief parameter study and excursions from the baseline case were
considered and are described in the following paragraphs.

Mesh type and density. Finite element meshes are typically more refined (smaller
elements) in the regions of higher stress gradients and coarser away from these locations.
Two additional mesh types and density using this principle were investigated for each
baseline case to evaluate this effect on the predicted results. These two variations on mesh
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discretization are generally referred to herein as uniform bias and paver-type, using the
notation of the PATRAN pre-processor used to generate the meshes. These mesh types are
best understood by viewing the generated meshes for the three baseline cases.

The uniform bias mesh discretizations for the three cases are illustrated in Figures 3.8,
3.9, and 3.10, respectively. In these cases the mesh is finer in the region of load application
where the stress gradients are higher, and becomes progressively coarser as the distance from
this region increases. In fact, the distance between nodes in the vertical and horizontal
directions increase generally proportionally with distance from the surface and axis of
symmetry (thus the description as uniform bias). All of the elements are still rectangular but
the aspect ratio varies considerably from the preferred unity away from the region of most
interest. This mesh utilizes far fewer elements than the baseline cases described previously.

The paver-type meshes, shown in Figures 3.11, 3.12, and 3.13, have some similarities to
the uniform bias types in that the mesh becomes coarser with distance from the loaded
region. In fact, the regions along the surface in the AC layer and adjacent to the axis of
symmetry under the loaded area are the same as the uniform bias mesh. The mesh in the
remaining region is somewhat coarser than the uniform bias mesh with a decreasing number
of nodes (and elements) at a given level or horizontal distance from the axis of symmetry.
This type of mesh, sometimes resembling a spider web, results in quadrilateral elements that
are no longer rectangular but that still have reasonable aspect ratios and skew ratios. The
paver-type mesh has somewhat fewer nodes and elements than the uniform bias mesh.

Figure 3.8. Uniform bias finite element mesh for C-141 analysis.
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Figure 3.9. Uniform bias finite element mesh for B-727 analysis.

Figure 3.10. Uniform bias finite element mesh for F-15 analysis.
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Figure 3.11. Paver-type finite element mesh for C-141 analysis.
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Figure 3.12. Paver-type finite element mesh for B-727 analysis.
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Figure 3.13. Paver-type finite element mesh for F-15 analysis.
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In general, the effect of mesh discretization shown in Table 3.5 for the C-141 analyses is
small, i.e., the FEM results are little changed by the different mesh discretizations, with the
exception of the horizontal and vertical strains, where the prediction is somewhat worse for
the two coarser meshes. This difference is probably directly attributable to the coarsening of
the mesh directly beneath the loaded surface, i.e., the baseline mesh used four elements
across the loaded area and the coarser meshes only used two elements for the C-141 analyses.
The other results do not change significantly with the different meshes.

Table 3.5. Comparison of different mesh types for C-141 analysis.

Layer| top/  |Description FEM A
center/ definition C-141
bottom ~base[ unif. bias paver
1 top jvertical displacement day -40.9 -40.7 -40.9
1-3 relative displacement d-dy 0.7 1.1 0.9
1 bottom horizontal strain ex 13.3 39.5 39.
3 top |vertical strain ey -15.4 -27.0 -32.4
1 center |horizontal stress SIg-X 2.1 4.3 .
1 vertical stress sig-y -1.6 0.0 0.0
2 center [horizonfal stress SIg-X -0.3 -0.3 -0.3
2 vertical stress sig-y -0.1 -0.9 -0.8
3 top |horizontal stress sig-X -0.4 -0.4 -0.4
3 vertical stress sig-y -0.2 -0.2 -0.1




A review of the results for the B-727 analyses shown in Table 3.6 also indicate little
change in the results due to the different mesh discretizations. The only result that shows a
significant change between mesh types is the predicted vertical strain at the top of the third
layer (subgrade), where the prediction appears to worsen. This result is probably due to (D
the larger elements with poorer aspect ratios in this region, and (2) the fact that results are
presented at the centroid of elements which, for the larger elements, occurs at a lower depth
than in the baseline model.

Table 3.6. Comparison of different mesh types for B-727 analysis.

Layer| top/ |Deschnipuon FEM 7
center/ definition B-727
bottom base][ unif. bias paver
T iop  [vertical displacement | dy 447 429 449
1-3 relative displacement{ d-dy 0.6 0.3 0.3
1 bottom [horizontal strain ex 38.9 40.5 42.0
3 top |vertical strain ey -15.5 -28.5 -30.6
1 center |[honzontal sfress Sig-X 4.0 4.0 4.0
1 vertical stress sig-y -2.0 2.0 -2.0
2 center [horizontal stress SIg-X -0.5 -0.6 -0.
2 vertical stress sig-y -0.2 -2.8 -3.4
3 top honzontal sfress SIg-X -0.6 -0.6 -0.6
3 vertical stress sig-y -0.3 -0.2 -0.2

The results shown in Table 3.7 for the F-15 analyses generally agree with the

observations from the previous comparison.

Table 3.7. Comparison of different mesh types for F-15 analysis.

Layer| top/ [Description FEM x

center/ definition F-15
bottom base] unif. bias paver
1 top  |veriical displacement ay 48.3 38.6 48.6
1-3 relative displacement| d-dy 0.2 -1.9 0.0
1 bottom [horizontal strain ex 9.7 5.4 3.2
3 top |vertical strain ey -15.3 -38.8 -27.6
1 center fhorizontal stress si1g-X 3.8 3.8 4.1
1 vertical stress sig-y -0.4 -0.3 -0.6
2 center [horizontal stress Sig-X -0.8 -0.5 -0.8
2 vertical stress sig-y -0.2 -1.0 -1.0
3 top |horizontal stress SIg-x -0.5 3.1 -0.5
3 vertical stress sig-y -0.3 -0.9 -0.2

Overall, the coarser meshes predicted most of the results of interest about the same as
the more refined baseline meshes. The differences between meshes was generally smaller
than the differences between the FEM and LEM, and generally were only significant in the
subgrade layer. Thus, biased or paver-type meshes should be relatively useful for analysis if
properly applied in regions of most interest.




Boundary effects. It was recognized a priori that the finite element modeling technique
imposes constraints on the model through fixed bottom and side boundaries to the continuum
of pavement and soil. In fact, the comparison of results of the baseline FEM and LEM
analyses indicated some differences that were suspected to be due, at least partly, to the
boundary effects. This supposition was investigated by selected revised analyses of the
baseline case for the B-727 model. We expect that the results obtained from the B-727
analyses would be similarly reflected in analyses of other wheel load cases.

The three variations of boundary conditions for the B-727 model considered (1) moving
the bottom boundary to a depth of 20 feet (compared to the base model depth of 92 inches),
(2) extending the side boundary to 432 inches (from 88 inches) and the bottom boundary to
600 inches, and (3) application of infinite elements along both bottom and side boundaries of
the baseline model. The mesh utilized for moving the bottom boundary to a depth of 20 feet
is depicted in Figure 3.14, in which the fine mesh of the baseline case is quickly transformed
to a relatively coarse mesh between the 92-inch depth and the 240-inch depth. Even though
the lower portion of the mesh is relatively crude, it serves the purpose of considerably
lowering the boundary of the model without changing other parameters. The side boundary
in this model was maintained at a distance of 88 inches.
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Figure 3.14. Finite element mesh for 20-foot depth.

A detailed finite element model was generated with the side boundary at a horizontal
distance of 432 inches (36 ft.) and the bottom boundary at a depth of 600 inches (50 ft.). This
model, shown in Figure 3.15, consisted of 1195 nodes and 1132 elements. An even more
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detailed model with a rectangular grid having over 3000 elements was also analyzed, but is
not shown here. This model is considered to be larger in extent and mesh size than would
normally be applied in typical geomechanical analyses and serves as an upper bound on mesh
size and refinement.
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Figure 3.15. Finite element mesh for 36-foot width and 50-foot depth.

The mesh utilizing infinite elements on both bottom and side boundaries of the baseline
B-727 model is depicted in Figure 3.16. Infinite elements are available in the ABAQUS
finite element software specifically for modeling cases such as this where the actual structure,
or portions thereof, are actually an elastic continuum. These elements, which have special
rules for location, size, and nodal numbering, provide an elastic boundary that models a
continuum with infinite reach. Specifically, these axisymmetric infinite elements are four-
noded, with the element oriented with the first two node numbers along the boundary with
the finite elements and nodes 2 and 3 “pointing” in the infinite direction. The “far end” of
the infinite element must be twice as far from the “pole” of the model as the finite boundary
nodes (the “pole” in this model is the center of the loaded radius at the surface). The infinite
elements are added to the side and bottom boundaries of the baseline model as shown in
Figure 3.16. The aspect ratio of these elements is controlled by the special rules for infinite

elements.
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Figure 3.16. Finite element mesh using infinite elements at boundaries.

The key results of these three boundary condition variations are compared with those
from the baseline case for the B-727 in Table 3.8. For the case where the bottom boundary
was lowered to 20 feet, the only significant change was in the improved prediction of the
vertical deflection at the surface. As expected, this deflection increased in the deeper model
due to inclusion of more of the vertical continuum.

When the finite model boundaries were extended to 432 inches horizontally and 600
inches vertically, most results improved to generally excellent agreement with the LEM
analysis. The refined large model (3000+ elements) showed only a slight improvement in
fidelity compared to the model with 1132 elements, indicating that the mesh shown in
Figure 3.15 was sufficiently fine.

The model using infinite elements along both boundaries generally agreed very well
with the LEM results. The revised FEM predictions were only a few percent different from
the LEM results with the exception of the horizontal stress at the top of the third (subgrade)
layer. However, this prediction was greatly improved over the fixed boundary model and the
actual magnitudes of this value are quite small.
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Table 3.8. Comparison for different boundary conditions for B-727 analysis.

LCayer| top/ |Description FEM A B-727
center/ definition base 20 1t{36 ftwide]  infinite]
bottom depthf50 ft deep| elements

7 top  |vertical displacement dy B v, 242 2.1 5.
1-3 relative displacement| d-dy 0.6 0.6 0.7 04
1 bottom horizontal strain ' ex 38.5 38.5 10.8 4.
3 top |vertical strain ey -15.5 -17.1 -14.0 -12.2
1 center [horizontal stress SIg-X 4.0 4.0 ~2.0 2.

1 vertical stress sig-y -2.0 -2.5 2.5 -1.5
2 center [horizontal stress Sig-X -0.5 04 0.0 0.
2 vertical stress sig-y -0.2 -0.2 -0.5 -0.1
3 top [horizontal stress sig-X -0.6 -0.6 0.0 -0.2
3 vertical stress sig-y -0.3 -0.3 0.2 0.0

The effect of the boundary conditions is also generally illustrated in F igure 3.17, which
graphically depicts the FEM/LEM ratios for the B-727 baseline case and three variations of
boundary conditions. This figure plots the FEM/LEM ratio versus depth to the lower
boundary for each of the results of interest. Note that the side boundary location is at a
distance of 88 inches in the first two cases, at a distance of 432 inches in the third case, and at
infinity in the last case. For purposes of plotting, the infinite depth was arbitrarily assigned a
depth of 2000 inches to permit some reasonable scale. (Thus the slope of each line between
y=600 and y=2000 is arbitrary instead of undefined). This plot indicates the relative trend
and magnitude of convergence of the selected results as the distance to the lower boundary is
increased (assumed infinite in LEM). It is seen in the plot that the FEM/LEM ratio generally
approaches unity (perfect agreement) as the boundary distance increases.

A detailed look at the computed vertical displacements for different boundary conditions
is illustrated in Figure 3.18. Vertical displacement under the center of the load is plotted
versus depth for the different boundary conditions and compared to the LEM (BISAR)
results. As seen in this plot, the predictions improve to extremely good as the distance to the

boundary increases.

The key conclusion drawn from the data in Table 3.8 and the graph in Figure 3.17 is that
the results improve, often dramatically, as the real or apparent distance to the lower boundary
is increased. Note that the distance to the side boundary is also changed in the second
variation with infinite elements on both boundaries. The use of infinite elements for the
boundaries provides excellent agreement with the LEM results. Thus, the use of these
elements should be strongly considered in future finite element models of this nature.
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Material property variation. While somewhat outside the scope of comparing the linear
elastic solutions of the LEM and FEM, there was a brief, simple investigation of the effect of

tension stresses in the base and subgrade materials that actually can resist little, if any,
tension. A small excursion was attempted for the B-727 ‘models by specifying elastic
material with compression only in the subgrade and base’ layers. Although this material
option is available in the PATRAN and ABAQUS software, it is only briefly discussed in the
ABAQUS documentation and not demonstrated in any of the verification examples. After
several unsuccessful attempts at application of this material model, technical’ support for
ABAQUS was queried as to the implementation and application of this option. In general, it
was learned that this option is rather ill-defined and generally appeared to be little used.
Each solution attempt resulted in immediately divergent solutions, regardless of the scheme
or load step increment attempted. After these attempts with different solution schemes for
this nonlinear problem, this excursion was abandoned. At this time it is felt that this option is
probably not useful or workable for this type of problem. Nonlinear material properties
should be investigated using the more common nonlinear material models in ABAQUS.

3.5.1.7 Summary of two-dimensional results comparison.

The results of interest from four different methods of analysis have been presented
separately in the preceding sections. It is informative to compare these results, not only from
an academic perspective, but also to illuminate the potential for the simpler methods of
analysis for this type of problem. For purposes of comparison, the vertical and horizontal
(radial) stresses computed from the different methods are plotted versus depth. The
comparisons illustrated here are for the B-727 analyses, so that the effects of the finite
element boundary conditions can be also compared. These comparisons are presented in
Figures 3.19 and 3.20 for the vertical and horizontal stresses versus depth.

The extremely conservative nature of the vertical stress prediction from the Boussinesq
solution is evident from Figure 3.19. The other three solutions provide fairly consistent
results throughout most of the depth with the flexible plate solution predictions somewhat
higher than the FEM or LEM solutions below about a 6-inch depth. The FEM and LEM
solutions are very close throughout the depth plotted. The FEM stress predictions are
insensitive to the location of the mesh base.

The horizontal stresses plotted in Figure 3.20 show a greater spread between the
different solution methods, particularly in the upper 14 inches. The LEM solution is closer to
the FEM solutions than the flexible plate solution for the horizontal stress prediction.
Interestingly, the flexible plate solution is the only one that predicts essentially zero stresses

below about 20-inch depth.

A practical observation from these comparisons is that the relatively simple flexible
plate solution is reasonably good for this type of problem.
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Figure 3.19. Comparisons of vertical stress from various solution methods.
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3.5.2 Three-Dimensional Model

3.5.2.1 General formulation.

The finite element models used for three-dimensional analysis utilize three-dimensional
solid elements. Mesh configurations vary considerably for the 3-D models. Symmetry of the
material layers and loading was considered as appropriate to the single wheel and dual-wheel
loadings. For a single wheel load, a one-quarter model with symmetry about the two major
vertical planes is efficient. For dual wheel loading, a single vertical plane of symmetry
through the center of the two loads, or in some cases, a second vertical plane of symmetry
midway between the two loads normal to the line between the loads was utilized. Each plane
of symmetry was enforced by restraining the translation normal to the plane.

Based on the observations from the two-dimensional analyses and comparisons, the
three-dimensional analyses herein considered only one of the aircraft wheel loadings
evaluated in the two-dimensional comparisons. In particular, it was observed in the two-
dimensional model results that there was little difference in the comparative results for the
three different aircraft wheel loadings. Therefore, all comparisons were conducted only for
the B-727 wheel loading in the three-dimensional analyses. Although both single and dual
wheel loadings were analyzed, results are reported herein only for the cases with single wheel
loadings since the dual wheel loading cases showed the same trends and effects as the single

wheel cases.

3.5.2.2 Materials and loading.

The three-dimensional models use the material constants previously defined in Table 2.1
and the thicknesses of AC and BC defined in Table 2.2. The loadings are taken as single
wheel tire pressures for the B-727 aircraft. Dual wheel loadings were applied similarly with
the loadings separated by the centerline distance between wheels.

3.5.2.3 Boundary conditions.

The location of the side and bottom boundaries of the various three-dimensional models
were selected similarly to those in the two-dimensional analyses. The boundary locations
varied with the type of shape utilized in the modeling. These boundary locations extend the
model in each direction well away from regions of high stress. For fixed boundaries, the
displacement normal to the boundary was assumed zero (fixed) and displacements parallel to
the boundaries were left free to permit motions in that direction.

Several of the three-dimensional models utilized infinite elements along the boundaries
of the finite element model. The requirements for the infinite elements are similar to those in
the axisymmetric analyses, i.e., the infinite elements are directed “away” from the pole and
have the far end twice the distance from the pole as the near end. These requirements are
difficult to meet exactly for general conditions, e.g., where there is not a well-defined single
“pole”. In these cases, the requirements were simulated as closely as possible.
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3.5.2.4 Finite element mesh.

Quite a few different finite element meshes were utilized in the three-dimensional
analyses. These meshes differed in overall shape, boundary conditions, and mesh fineness.
Three general mesh configurations used are illustrated in F igure 3.21 below for reference.
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(a) Box-type mesh (b) Cylindrical-type mesh (c) Spherical-type mesh
Figure 3.21. General 3-D finite element mesh types.

The first type of mesh may be described as a box-type model and consists of a
rectangular parallelepiped for the region of interest with additional rectangular
parallelepipeds forming the finite or infinite boundary elements. This mesh type is fairly
typical for finite element modeling and is usually the most simple to generate.

A second general mesh type considered is similar to the box-type model but conforms
the vertical boundaries to the circular shape of the loaded area creating a quasi-cylindrical
type mesh. This mesh, though somewhat more difficult to generate than the box-type mesh,
yields a more efficient mesh in the horizontal plane.

The third general mesh type considered resembles a quadrant of a sphere. This
spherical-type mesh carries the curved surface to the second dimension and permits
application of infinite elements at the boundaries in their most appropriate orientation and
dimension. That is, the infinite elements can more closely meet the requirements previously
described as to their location, orientation, and length with respect to the “pole”, i.e., the point
of load application.

Although several variations of each mesh type were analyzed during the course of this
study, results are presented in the following section for only a few of the more important
and/or useful variations. These variations are described as appropriate to the understanding
of the results in each case. The results are presented in a logical progression, though not
necessarily in the order that they were originally developed.

3-27




3.5.2.5 Three-dimensional finite element analysis results.

The extraction of the finite element results and methods of comparison with the Layered
Elastic Method results were conducted similarly to that previously described for the two-
dimensional results. Further, for some cases, results from the third dimension were compared
with the LEM results to verify the fidelity of the results in this dimension.

For these models, the results are compared at a large number of locations to'examine the
ability of the three-dimensional finite element model to predict results comparable to the
LEM. The basic locations for comparison for the box-type model are illustrated in Figure
3.22 and generally are along the centerline of the model and under the wheel loads at layer
interfaces and centers. In general, vertical displacements are compared at several locations at
the surface, principal stresses are compared at the center of the AC and BC layers, horizontal
strains are compared at the bottom of the AC layer, and vertical strains compared at the top of

the subgrade.
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Figure 3.22. Locations for result comparisons.
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The box-type model was analyzed in several configurations, both with fixed boundaries
and with infinite elements. The first model, shown in Figure 3.23, utilized only finite
elements with the boundaries fixed in a direction normal to the surface. The two semi-
circular areas at the upper surface are the wheel loaded areas. The model utilizes one plane
of symmetry through the two wheel loads. This model serves as the baseline finite element
model for this configuration and produced results generally consistent with the axisymmetric
models with fixed boundaries. The model depicted in Figure 3.24 is similar to the fixed
model except that the boundaries are modeled with infinite elements. ’

Selected results from both models are shown in Table 3.9 and compared with the LEM
predictions for the single wheel loading. This table lists the results for vertical displacement,
horizontal and vertical strains, and horizontal and vertical stresses at a number of locations in
the model. The computed values from the two finite element models are compared with
those from the LEM (BISAR). Note that the FEM strain results at the layer interface nodes
are average values between layers, thus, the LEM results are similarly averaged here for
comparison.
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Figure 3.23. Box-type finite element mesh with fixed boundaries.
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Table 3.9. Results for box-type models with fixed and infinite boundaries.

single wheel load
LEM ABAQUS FEM/LEM Normalized
result vaniable point BISAR fixed infinite fixed[  infinite fixed] —infinite
vertical displacement 1 0.0404 0.0247 0.0390 0.61 0.97 -25.0% -2.2%
vertical displacement 2 0.0520 0.0342 0.0503 0.66 0.97 -28.3% 2.7%
vertical displacement 3 0.0628 0.0432 0.0610 0.69 0.97 -31.2% -2.9%
vertical displacement 4 0.0520 0.0313 0.0505 0.60 0.97 -33.0% -2.4%
vertical displacement 5 0.0405 0.0188 0.0393 0.46 0.97 -34.6% -1.9%
verticai displacement 6 0.0370 0.0162 0.0358 0.44 0.97 -33.1% -1.9%
vertical displacement 7 0.0329 0.0148 0.0317 0.45 0.96 -28.8% -1.9%
horizontal strain 148
horizontal strain 8 148 118 143 0.80 0.97 -20.3% -3.4%
horizontal strain 8 148
horizontal strain 9 -146
horizontal strain 9 -146.5 -97 -145 0.66 0.99 33.4% 1.0%
horizontal strain 9 -147
vertical strain 10 -184
vertical strain 10 -286 -310 -264 1.08 0.92 8.4% 1.7%
vertical strain 10 -388
vertical strain 11 -144
vertical strain 11 -226 -230 -209 1.02 0.92 1.8% -7.5%
vertical strain 11 -308
vertical stress, z 12 -197 -196.3 -1%6.3 1.00 1.00 0.4% 0.4%
vertical stress, z 13 -25.9 -28.3 -25.4 1.09 0.98 -1.2% 0.3%
vertical stress, 2 10 -26 -8.39 -3.15 3.23 1.21 -2.9% -0.3%
vertical stress, z 14 -0.76 -0.004 0.029 0.03 -0.18 0.1% 0.1%
vertical stress, z 15 -10.3 -12.86 -10.15 1.25 0.99 -1.3% 0.1%
vertical stress, z 11 -2.19 -7.36 -2.53 3.36 1.16 -2.6% -0.2%
horiz. stress, x 12 -150 -135 -148.6| 0.90 0.99 7.5% 0.7%
horiz. stress, x 13 3.75 0.916 3.53 0.24 0.94 -1.4% -0.1%
horiz. stress, x 10 21.2
horiz. stress, x 10 10.45 1.85 8.92 0.18 0.85 -4.3% -0.8%
horiz. stress, x 10 -0.3

The stress results from both finite element models compare very favorably with those
predicted by the LEM. Strain results are not predicted as well, particularly in the model with
fixed boundaries. As was seen previously in the axisymmetric models, the model with fixed
boundaries seriously under-predicts vertical displacement. The model with infinite elements
at the boundaries predicts all quantities very well. For example, the predictions for vertical
displacement at the surface are compared in Figure 3.25. This comparison indicates that the

use of infinite elements produces exceptional agreement.
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Figure 3.25. Comparisons of predicted deflection basin.

Note that the plot of deflection basin in Figure 3.25 is actually in two horizontal
directions. The displacements are plotted at points 1 through 7, from right to left on the plot.
Thus, the “positive” distance values are along the x-axis (points 1-5), and the “negative”
distance values are along the y-axis (points 5-7). This plot clearly indicates the improvement
in prediction of vertical displacement provided by the use of infinite elements to model the

boundaries.

The box-type mesh was also utilized to consider a slight variation in the mesh in the area
of the pressure loading. Whereas the loaded area in the previous models conformed to the
assumed circular shape as shown in Figure 3.26(a), the new variation of the mesh in the
loaded area is rectilinear as shown in Figure 3.26(b). The shaded area of the mesh was
loaded to produce the same total load. The results of this analysis are compared in
Table 3.10 to those of the previous model to determine the effect of this slight load pattern
variation. As seen in this comparison, the effects of the mesh variation are very small.
Revision of the mesh to this degree does not significantly affect the predicted results, i.e., for
this case, the simpler rectilinear mesh is adequate for the analysis. It should be noted that the
revised mesh is actually quite fine and the boundaries of the loaded area do not diverge
greatly from the circular area. Larger variations in the mesh arrangement or load footprint

might induce larger differences in the results.
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Figure 3.27. Box-type mesh with infinite and rectangular loaded elements.
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Table 3.10. Results for models with circular area and rectangular loaded elements.

single wheel loads
ABAQUS rect/circ A

result variable point BISAR circular] rechilinear :

vertical displacement 1 0.0404 0.0390 0.0392 1.005 0.3%
vertical displacement 2 0.052 0.0503 0.0505 1.004 0.3%
vertical displacement 3 0.0628 0.0610 0.0615 1.008}} - 0.8%
vertical displacement 4 0.052 0.0505 0.0507 1.004 0.3%
vertical displacement 5 0.0405 0.0393 0.0395 1.005 0.3%
vertical displacement 6 0.037 0.0358 0.0360 1.006 0.3%
vertical displacement 7 0.0329 0.0317 0.0318 1.003 0.2%
honizontal strain 8 148

horizontal strain 8 148 143 144 1.007 0.7%
horizontal strain 8 148

horizontal strain 9 -146

horizontal strain 9 -146.5 -145 -145 1.000 0.0%
horizontal strain 9 -147

vertical strain 10 -184

vertical strain 10 -286 -264 -265 1.004 -0.3%
vertical strain 10 -388

vertical strain 11 -144

vertical strain 11 -226 -209 -210.2 1.006 -0.4%
vertical strain 11 -308

vertical stress, z 12 -197 -196 -199 1.012 1.2%
vertical stress, z 13 -25.9 -25 -26 1.007 0.1%
vertical stress, z 10 2.6 -3.15 -3 1.006 0.0%
vertical stress, z 14 -0.16 0.029 0.08 2.759 0.0%
vertical stress, z 15 -10.3 -10.15 -10.17 1.002 0.0%
vertical stress, z 11 -2.19 -2.53 -2.539 1.004 0.0%
horiz. stress, x 12 -150 -148.6 -151.1 1.017 1.3%
horiz. stress, x 13 3.75 3.53 3.611 1.023 0.0%
horiz. stress, x 10 21.2

horiz. stress, x 10 10.45 8.92 8.986 1.007 0.0%
horiz. stress, x 10 -0.3

Several variations of the cylindrical-type mesh shown in Figure 3.28 were analyzed,
which included fixed and infinite element boundaries, and different mesh fineness and
orientations. The results for a single wheel loading for the mesh shown in Figure 3.28 are
summarized in Table 3.11 for “coarse” and “refined” meshes with fixed boundary conditions.
These comparisons are made at a number of the general locations previously depicted in

Figure 3.22.
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Figure 3.28. Cylindrical-type finite element mesh.

The first two columns in Table 3.11 describe the type of result (displacement, strain, or
stress) and the location. The third column lists the LEM results from BISAR. Columns four
and five list the comparable results determined from the FEM (ABAQUS) analyses for the
coarse and refined meshes. The absolute ratios (FEM/LEM) and the normalized differences
indicate the fidelity of the FEM results for the two meshes. The comparison of results for the
two different mesh densities with the results from BISAR are quite consistent with previous
results for other mesh configurations. Specifically, stresses are predicted fairly well, strains
predicted less well, and vertical displacements under-predicted. In addition, the refined mesh
shows a slight improvement in predictions (convergence). The boundary conditions and
boundary locations appear to be the cause for most of the discrepancy in results.




Table 3.11. Results for cylindrical model, fixed boundaries, single wheel load.

single wheel load
ABAQUS FeEMTEM A

result vaniable point BISAR| coarse refin coarse refin coarse refin

vertical displacement 16 0.0318 0.0234 0.0245 0.74 0.77 -13.4% -11.6%
vertical displacement 17 0.0339 0.0256 0.0268 0.76 0.79 -13.2% -11.3%
vertical displacement 18 0.0366 0.0286 0.0299 0.78 0.82 -12.7% -10.7%
vertical displacement 5 0.0405 0.0332 0.0345 0.82 0.85 -11:6% -8.6%
vertical displacement 4 0.0520 0.0455 0.0469 0.88 0.90 -10.4% -8.1%
vertical displacement 3 0.0628 0.0569 0.0584 0.91 0.93 -9.4% -7.0%
vertical displacement 2 0.0520 0.0474 0.0488 0.91 0.94 -7.3% -5.1%
vertical displacement 6 0.0381 0.0311 0.0324 0.82 0.85 ~11.1% -9.1%
vertical displacement 7 0.0347 0.0288 0.0301 0.83 0.87, -9.4% -7.3%
horizontal strain 20 30 21 19 0.70 0.63 6.1% -7.4%
horizontal strain 8 148 217 214 1.47 1.45 46.6% 44.6%
vertical strain 22 -185 97 -98.4 0.52 0.53 -22.7% -22.3%
vertical strain 10 -388 -251 -258 0.65 0.66 -35.3% -33.5%
vertical stress, z 19 0.018 0.152 0.01 8.44 0.56 -0.1% 0.0%
vertical stress, z 12 -197 -192 -192 0.97 0.97 -2.5% -2.5%
vertical stress, z 21 -1.37 -3.04 -2.67 222 1.85 0.8% 0.7%
vertical stress, z 13 -23.1 -23.7 -23.8 1.03 1.03 0.3% 0.4%
horiz. stress, x 19 -11.8 -8.81 -7.49 0.75 0.63 -1.5% -2.2%
horiz. stress, x 12 -150 -134 -135 0.89 0.90 -8.0% -7.5%
horiz. stress, x 21 -1.3 -1.98 -2.15 1.52 1.65 0.3% 0.4%
horiz. stress, x 13 433 4.27 3.82 0.99 0.88 0.0% 0.3%

Three variations of this model were analyzed considering different arrangements of
infinite elements along the boundaries. First, the basic model was augmented with horizontal
infinite elements along the vertical boundaries as shown in Figure 3.29, with the vertical
displacements along the bottom remaining fixed. Second, a model with fixed horizontal
displacements along the sides and vertical infinite elements only along the bottom was
considered. Finally, a model with horizontal and vertical elements along the sides and
bottom, respectively, was analyzed. These three variations on the application of infinite
elements provide some indication as to the use of infinite elements only on some of the

boundaries.
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Figure 3.29. Cylindrical-type mesh with horizontal infinite elements.

The results for the model with horizontal infinite elements (Figure 3.29) only are
compared with the LEM results in Table 3.12. As shown in these results, the addition of
infinite elements along the sides actually makes little difference in the stress and strain
results. Some predictions are slightly improved but most are little changed. The largest
difference in results is the considerable under-prediction of vertical displacements in the
model with horizontal infinite elements, as compared to the fixed boundary model. Actually,
this result is not too surprising if one considers the actual boundary conditions modeled in
each case. In the “fixed” boundary model, whereas the horizontal displacement along the
side boundary is fixed, the vertical displacement is unrestrained. Although the horizontal
infinite elements relax the restraint in the horizontal direction, they add a measure of restraint
in the vertical direction. Thus, for prediction of vertical displacements, the bottom boundary
remains fixed and the side boundaries offer more vertical restraint than the “fixed” model.
The effectiveness of the infinite elements in this model is also reduced by the totally
horizontal orientation of the elements. Although this orientation is reasonable in the upper
portion, the element lengths and orientation in the lower portion of the model violate the
requirements that infinite elements generally radiate away from the “pole” with a length
equal to their distance from the pole.
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Table 3.12. Results for cylindrical model, horizontal infinite elements.

singie wheel foad
ABAQUS FEM/LEM X
resuft variable point BISAR ~ fixed infinite fixed infinite fixed infinite
vertical displacement 16 0.0318 0.0245 0.0110 0.77 0.35 -11.6% -33.1%
vertical displacement 17 0.0339 0.0268 0.0129 0.79 0.38 -11.3% -33.4%
vertical displacement 18 0.0366 0.0299 0.0153 0.82 0.42 -10.7% -33.9%
vertical displacement 5 0.0405 0.0345 0.0192 0.85 0.47 -9.6% -33.9%
vertical displacement 4 0.0520 0.0469 0.0305 0.90 0.59 -8.1% -34.2%
vertical displacement 3 0.0628 0.0584 0.0408 0.93 0.65 -7.0% -35.0%
vertical displacement 2 0.0520 0.0488 0.0300 0.94 0.58 -5.1% -35.0%
vertical displacement 6 0.0381 0.0324 0.0167 0.85 0.44 -9.1% -34.1%
vertical displacement 7 0.0347 0.0301 0.0135 0.87 0.39 -7.3% -33.8%
horizontal strain 20 30 19 20 0.63 0.67 -7.4% -6.8%
horizontal strain 8 148 214 197 1.45 1.33 44.6% 33.1%
vertical strain 22 -185 -98.4 -114 0.53 0.62 -22.3% -18.3%
vertical strain 10 -388 -258 -252 0.66 0.65 -33.5% -35.1%
vertical stress, z 19 0.018 0.01 0.015 0.56 0.83 0.0% 0.0%
vertical stress, z 12 -197 -192 -192 0.97 0.97 -2.5% -2.5%
vertical stress, z 21 -1.37 -2.67, -1.15 1.85 0.84 0.7% 0.1%
vertical stress, z 13 -23.1 -23.8 -22.1 1.03 0.96 0.4% -0.5%
horiz. stress, x 19 -11.8 -7.49 -8.21 0.63 0.70 -2.2% -1.8%
horiz. stress, x 12 -150 -135 -145 0.90 0.87 -7.5% -2.5%
horiz. stress, x 21 1.3 -2.15 -1.08 1.65 0.83 0.4% -0.1%
horiz. stress, x 13 4.33 3.82 4.41 0.88 1.02 0.3% 0.0%

The results for the model with vertical infinite elements only are compared with the
LEM results in Table 3.13. As shown in these results, the addition of infinite elements at the
base makes little difference in the stress and strain results. The prediction of vertical
displacements in the model with vertical-only infinite elements is quite poor and is quite a bit
higher than the LEM results. The model with infinite elements at the base is more flexible
than the “fixed” boundary model at the base and adds no vertical restraint along the vertical
sides. Thus, for prediction of vertical displacements, the free side boundary combined with
the vertical infinite elements leads to higher displacements than the LEM model which has
some vertical restraint along the sides. Note that the vertical infinite elements also do not
meet the requirements regarding length and orientation as described previously.




Table 3.13. Results for cylindrical model, vertical infinite elements.

single wheel load
ABAQUS FEM/LEM A
result vanable point BISAR tixed infinite hxed inninite fixed infinite
vertical displacement 16 0.0318 0.0245 0.0497 0.77 1.56 -11.6% 28.5%
vertical displacement 17 0.0339 0.0268 0.0520 0.79 1.53 -11.3% 28.8%
vertical displacement 18 0.0366 0.0299 0.0551 082 1.51 -10.7% 29.5%
vertical displacement 5 0.0405 0.0345 0.0597 0.85 147 -9.6% 30.6%
vertical displacement 4 0.0520 0.0469 0.0721 0.90 1.39 -8.1% 32.0%
vertical displacement 3 0.0628 0.0584 0.0836 0.93 1.33 -7.0% 33.1%
vertical displacement 2 0.0520 0.0488 0.0740 0.94 142 -5.1% 35.0%
vertical displacement 6 0.0381 0.0324 0.0576 0.85 1.51 -9.1% 31.1%
vertical displacement 7 0.0347 0.0301 0.0553 0.87 1.59 -7.3% 32.8%
horizontal strain 20 30 19 19 0.63 0.63 ~7.4% -7.4%
horizontal strain 8 148 214 214 145 145 44.6% 44 6%
vertical strain 22 -185 -98.4 -98 0.53 0.53 -22.3% -22.4%
vertical strain 10 -388 -258 -258 0.66 0.66 -33.5% -33.5%
vertical stress, z 19 0.018 0.01 0.01 0.56 0.56 0.0% 0.0%
vertical stress, z 12 -197 -192 -192 0.97 0.97 -2.5% -2.5%
vertical stress, z 21 -1.37 -2.67 -2.67 1.95 1.85 0.7% 0.7%
vertical stress, z 13 -23.1 -23.8 -23.8 1.03 1.03 0.4% 0.4%
horiz. stress, x 19 -11.8 -7.49 -7.49 0.63 0.63 -2.2% 2.2%
horiz. stress, x 12 -150 -135 -1354 0.90 0.90 -7.5% -7.3%
horiz. stress, x 21 -1.3 -2.15 -3.82 1.65 294 0.4% 1.3%
horiz. stress, x 13 433 3.82 2.15 0.88 0.50 0.3% 1.1%

Finally, a cylindrical model that incorporated horizontal infinite elements along the sides
and vertical infinite elements along the base, as depicted in Figure 3.30, was analyzed. Note
that this model contained only horizontal and vertical infinite elements and thus does not

satisfy the requirement that infinite elements be
“pole” (point of load application). While this m

.model with radial infinite elements, the effect of

known a priori.

generally oriented radially away from the
odel is generally simpler to generate than

the “improper” modeling on results was not
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Figure 3.30. Cylindrical-type mesh with vertical and horizontal infinite elements.

The results of this analysis for a single wheel loading are compared with the LEM results
and the results of the “fixed” boundary model in Table 3.14. In general, the fidelity of the
results for stress and strain are fairly comparable to the fixed boundary model. The major
exception is the considerable over-prediction of vertical displacement in the model with
infinite elements. It is unclear at this time what is the source of this discrepancy. A review
of the displacement basin indicates that the over-prediction is essentially constant, i.e., the
FEM prediction is 0.023 inch greater than the LEM prediction at all points. This constant,
almost rigid-body vertical motion, may indicate that the displacements may be very sensitive
to the orientation of the vertical infinite elements, and/or to the lack of radial infinite
elements other than near the surface and directly below the load.

In general, this cylindrical-type model is not recommended for further application to the
problem at hand due to the relative difficulties in modeling and the poor results obtained
from the models investigated. The general fixed-boundary model is somewhat more difficult
to generate than the previous box-type model due to the curved sides. More importantly, the
model is not amenable to proper modeling with infinite elements due to a basic geometry that
inhibits use of radially-oriented elements of proper length. Finally, the previously described
attempts at using infinite element models that do not meet the requirements for infinite
elements lead to inconsistent, unsatisfactory results that are difficult to understand or explain.
For the additional difficulty in modeling incurred by this mesh type, it is more beneficial to
carry the curved shapes to the vertical plane as well as the horizontal plane and produce the
“spherical-type” model described in the following paragraphs.
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Table 3.14. Results for cylindrical model, horizontal and vertical infinite elements.

single wheel load
ABAQUS FEM/LEM A
result variable point BISAR fixed infinite fixed infinite fixed infinite
vertical displacement 16 0.0318 0.0245 0.0547 0.77 1.72 -11.6% 36.5%
vertical displacement 17 0.0339 0.0268 0.0572 0.79 1.69 ~11.3% 37.1%
vertical displacement 18 0.0366 0.0299 0.0601 0.82 1.64 -10.7% 37.4%
vertical displacement 5 0.0405 0.0345 0.0642 0.85 1.59 -9.6% 37.7%
vertica!l displacement 4 0.0520 0.0469 0.0758 0.90 1.46 -8.1% 37.9%
vertical displacement 3 0.0628 0.0584 0.0861 0.93 1.37 -7.0% 37.1%
vertical displacement 2 0.0520 0.0488 0.0751 0.94 1.44 -5.1% 36.8%
vertical displacement 6 0.0381 0.0324 0.0616 0.85] 1.62 9.1% 37.4%
vertical displacement 7 0.0347 0.0301 0.0574 0.87 1.65 -7.3% 36.1%
horizontal strain 20 30 19 -63 0.63 -2.10 -7.4% -62.8%
horizontal strain 8 148 214 151 145 1.02 446% 2.0%
vertical strain 22 -185 984 -238 0.53 1.29 -22.3% 13.7%
vertical strain 10 -388 -258 -382 0.66 0.98 -33.5% -1.5%
vertical stress, z 19 0.018 0.01 0.003 0.56] 0.17 0.0% 0.0%
vertical stress, z 12 -197 -192 -192 0.97 0.97 -2.5% -2.5%
vertical stress, z 21 -1.37 -2.67 -1.59 1.95 1.16 0.7% 0.1%
vertical stress, z 13 -231 -23.8 224 1.03 0.97 0.4% -0.4%
horiz. stress, x 19 -11.8 -7.49 26 0.63|. 220 -2.2% 7.1%
horiz. stress, x 12 -150 -135 -164 0.90 1.09 7.5% 7.0%
horiz. stress, x 21 -1.3 -2.15 -0.31 1.65 0.24 04% -0.5%
horiz. stress, x 13 4.33 3.82 523 0.88 1.21 0.3% -0.5%

A very simple spherical-type model was investigated to evaluate the possibility of using
this shape and to compare the simplest 3-D application to the LEM resuits. This model,
shown in Figure 3.31, consists of one-fourth of a half-sphere of a single material (one layer)
and includes infinite elements at the boundaries. The two vertical surfaces are planes of
symmetry. The central area of the mesh is the “finite” portion of the model, with the outer
area being infinite elements representing the elastic boundaries. A single wheel loading is
applied over the central circular area and the solid elements generally radiate out from this
area. The infinite elements thus meet the specified requirements as closely as can be
accomplished for a three-dimensional model.
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Figure 3.31. Single-layer spherical-type finite element mesh.

Results of this analysis were compared with a comparable BISAR analysis at three
depths and at two radial distances, specifically under the center of the load and at the edge of
the load. The results are compared in Table 3.15, which is a different layout than the
previous tables in this report. At each of the six comparison locations, which are defined by
the depth and radial distance on the second and third rows of the table, the results are
compared for seven components of displacement, strain, and stress as indicated in the
leftmost column. Each comparison includes the LEM (BISAR) prediction, the FEM
prediction, the direct ratio of the FEM and LEM result, and the normalized percent

difference.

The results indicate excellent agreement between the FEM and LEM except for stresses
and strains at the surface (depth=0). This apparent difference is actually a by-product of the
method of strain and stress reporting at a free surface in the finite element model. In the
finite element model, the stresses and strains are actually calculated and stored at the element
integration points and averaged at the element nodes. At interior nodes, the average of the
element quantities at integration points in adjacent elements is a good measure of the nodal
quantity. However, at free surface nodes there are no adjacent element integration points
with which to average and the nodal quantity more generally reflects the integration point
value, in this case usually under-predicting the nodal quantities which tend to be maximum at
the free surface. Note that native nodal quantities, such as displacement are directly
computed at the nodes and do not suffer from this nodal averaging discrepancy.
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Table 3.15. Results for simple, single layer spherical-shaped model.

node 1 26 51 5 30 &5
X 0 0 0 ~ 8.60 860 .69
Y (depth) 0 21.725 43.45 0 21.286 42572
vertical y LEM 0.0607 0.0201 0.0706 0.0387 0.0782 0.01
displacement FEM 0.0598 0.0196 0.01051 0.0377 0.0179 0.0103
FEM/LEM 0.99 0.98 0.99 0.97 0.98- 0.99]
N 1.5% -0.8% 0.7% -1.6% 0.5% 0.2%
vertical y LEM 199 397 114 996 30.9 108
stress FEM 174 385 116 79.8 30.3 19
' FEM/LEM 0.87 0.97 1.02 0.30 0.98 1.03
A 12%% 0.6% 0.1% 9%  0.3%  0.2%
horizontal x LEM 169 -0.645 -0.468 69.7 2.81 0.07
stress FEM 120 0.71 -0.65 458 2.79 0.
FEMLEM 0.71 110 139 068 0.99 013
Py -29.0% 0.0% 0.1% -14.1% 0.0% 0.0%
horizontal z CEM 169 -0.645 -0.468 996 048 044
stress FEM 120 023 -0.65 ~ 65 042 0.
FEM/LEM 0.71 0.36 1.39 0.65 0.88 1.14
A -29.0% 0.2% 0.1% ~&U.97% U7 U/
vertical y EM 1670 B804 234 807 607 219
strain FEM 1797 780 241 820 589 226
FEMILCEM 1.12 0.97 1.03 1.02 098 1.03
N ~11.6% 1.5% 0.4% 0.8% 07%  0.4%|
horizontal x LEM 807 -287 86 0 -156 74
strain FEM 342 =279 80 T 153 74
FEM/LEM 0.42 097 1.05[~ 0.98 1.00
A 57.5% 1.0% 5% -11.9% 0.4% 0.0%
horizontal z LEM 807 -287 -86 807 -245 84
strain FEM 342 =279 -0 470 -240 88
FEMILEM 0.42 0.57 105 - 052 0.98  1.03]
A -57.6% 1.0% -0.5% -48.0% 0.6% -0.5%

The effect of nodal averaging of element quantities is simply illustrated in Figure 3.32, which
plots the FEM predictions of vertical and horizontal nodal stress quantities versus depth.
Perhaps the most obvious discrepancy in this method of nodal averaging prediction is evident
in the vertical stress at the center of the loaded area, which, by statics, must approach the
applied tire pressure of 199.4 psi at the surface. We can see in the plot of Figure 3.32 that the
stress gradient with depth would more appropriately fit the surface pressure of 199.4 psi than
the nodal averaged prediction of 174 psi. This same anomaly is present, though less
conspicuous in the other predicted stresses. This anomaly in element quantities predicted by

- typical finite element procedures should be kept in mind in interpretation of any present and

future results predicted using this method.
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Figure 3.32. Predicted nodal stress versus depth (spherical model).

A refined mesh was also analyzed for the simple, single-layer spherical model to verify
the previously described assertion regarding the anomaly in stresses and strains at the free
surface. Though not included here, the results of this analysis indeed confirmed that the
element quantities (stress, strain) did converge toward the expected values predicted by the
Layered Elastic Method.

The spherical-type model was applied in three additional different configurations to the
problem at hand, i.e., the baseline pavement layer thicknesses, materials, and wheel loading
for the B-727. Each of these models was for a single wheel loading and had the overall shape
of the previous simple one-layer model, but consisted of the three layers of asphaltic
concrete, base course, and subgrade utilized in the baseline cases. The three models included
variations in modeling of the infinite element orientations and the mesh density.

The first of these models, shown in Figure 3.33, consists of an inner “core” of the
pavement system with the three layers modeled similarly to that of previous 3-D models.
The quarter-hemispherical core includes all three layers with a radial mesh in a plan view.
The boundaries are modeled with infinite elements that radiate from the “pole” (loaded area)
to produce the raiher unusual configuration shown. This boundary configuration obviously
does not reflect the reality of the horizontal pavement layers extending from the inner model
but was analyzed to determine what effect this modeling “error”” would have on the predicted
results.
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Figure 3.33. Three-layer spheﬂéal-type mesh with radial infinite elements.

Though not presented here for brevity, the results of the above mode] indicated an overly
stiff system, with predicted vertical displacements well below that predicted by the LEM and
previous 2-D and 3-D finite element models. This result was certainly expected since the
boundary infinite elements extend radially outward, creating an unrealistically stiff boundary,
especially for the base course. The predicted stresses underneath the load were less affected
by this unrealistic boundary, yielding results comparable to previous FEM analyses.

The second spherical-type model analyzed with three layers utilized more realistic
boundary modeling, with the mesh shown in Figure 3.34. The infinite elements properly
maintain the layer thicknesses to provide a plausible boundary stiffness. This configuration
does, however, partially violate the preferred orientation of infinite elements in the top two
layers that are presumed to radiate from the pole. The results of the analysis permit an
examination of the effect of this minor variance in the application of infinite elements.
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Figure 3.34. Three-layer spherical-type mesh with layered infinite elements.

Selected results from this analysis are presented in Table 3.16 for five depths under the
center of the load, and five depths along element boundaries radiating downward from the
edge of the load. The finite element results are compared with BISAR results computed at
the same coordinate locations. The results indicate good agreement with the LEM results,
with the expected exception of surface stresses and strains. This exception was described and
explained in the previous, single layer spherical-type model and appears reasonable in this
case. Basin displacements are about 7-9 percent lower than the LEM prediction and most
stress and strain predictions not at the free surface are within a few percent of the LEM
prediction. Overall, this model predicts interior stresses and strains very well.
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Table 3.16. Results for three-layer spherical-type model.

node 1 6 11 90 110 5 10 15 94 114
X 0 (1] (0 0 [ 885  8./88 8BS 052 ITEay
Y (depth) 0 15 3 24.5 3 0 15 3 245 45
mmwmz 0.0518 0.0511 0.0414 0.0%
FEM 0.0572 0.0569 0.056 0.0385 0.0344] 0.0465  0.04625 0.046 00372 0.0337
FEMILEM 0.51 0.91 0.91 0.90 0. 0.85 0.90 0.9 0.90 0.89]
x 85%  8.6% 35% 538% 8% B5% 35% 1% 5.7% IR
LEM 199 197 189 259 2.6 99.6 84.9 791 182 24
171 154 178 2435 35 55.2 62.7  55.7 174
0.86 0.95 0.54 0.96 135 0.55 0.74 0.75 0.96 1.3
x 3% 1% I5%  03%  05% 20.3%  11.%% T% D4% 0.4%]
:FEEH 282 150 5065 3.75 -10. 182 83.1 236 338 35
M 230 143 13 35 34 126 75.7 273 -3.56 774
FEMILEM 082 0.55 105 0.53 X 085 o091 115 ~1.05 0.8
x -18.4% -0.4% 15% 0.1% 0.7% -19.5% -2.6% 1.3% 0.1% 0.6%
EM 282 0 5065 375 ~10.45 101 845 62.05 083 531
FEM 230 — 143 55 35 83 55.7 73 37 X1 5.95|
[ FEM/LEM 0.82 0.99 1.09 0.93 0.80 0.55 0.86 0.92 1.07 0.79
x 184%  0.4% 15% 0.1% 0.7%|  -16.1%  43% 3% [X
TEM 120 325 1123 315 — 2855 B85 138 305 27 33
FEM 132 420 991 303 262 19 72 260 210 239
FEM/ILEM 1.10 0.95 0.88  0.96 0.52 0.32 052 0.87 037 0.
x 1% 20.8% 1.8% 1% 2% 36%  55% -11.6% 6%  A.48%]
LEM 557 183 -1475 -123 -167 487 128 1225 -101 157
— FEM 338 L] =144 18 -145 366 730 T3 100 =140
| FEM/ILEM 0.79 1.00 0.95 0.5 0.87 0.75 4.09 0.55 099 0.89
x 5% 0.0% 5% 0.5% 0% 220% 2.2% 53% 0.2% 317
%_ ~ 551 183 -147.5 -123 167 ~ 66 138 174 634 — -138]
I~ 4% 183 -144 18 145 0.3 126 157 51 A1
073 1.00 0.88  0.96 037 0.07 0.51 X X
x -20.5% 0.0% 0.6% 0.5% 4.0% -11.8% 22% 3.1% 0.4% 3.4%|

Based on the favorable results of the previous FEM model, a refined model, shown in F igure
3.35, was analyzed for the same conditions.
equivalent BISAR analysis, resulting in the comparisons shown in Table 3.17. As expected,
the result comparison improved somewhat for practically all quantities. The refined mesh
produces a very acceptable level of prediction, compared to the LEM (BISAR) prediction.

Results were similarly compared with an
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Figure 3.35. Refined three-layer spherical-type mesh with layered infinite elements.

Table 3.17. Results for refined three-layer spherical-type model.

node 2909 2916 2923 3407 3050 635 646 657 1864 1
X [1] 1] [ (1] [} 889 8.788 8886 10X IR
Y (depth) 0 15 3 245 [ ) 15 3 245 45
verticaly [~ LEM ] X X X X . m .0516 0.0571 0.0413 0.0373]
displ. [~ FEM 0.0583 0.0579 0.0571 0.03917  0.03495 0.0475 0.0473  0.04695 0.6377 0.0342]
0.93 0.93 0.53 0.97 [X 0.51 0.92 0.92 0.91 0.90]
X 2% . -1.0% 7.0% 535%  5.0% 12%  58% 5% 33% %
vertical y LEM 199 197 189 259 26 856 849 791 182 24
stress — FEM 174 1% T80 ~ 257 3.53] 0.2 65.7 53.6 173  3.28]
" FEM/LEM 0.87 0.9 0.9 0. 0.60 0.77 030 0.98 1.37]
x 125% B35% 45% 0% 0.5% -153% 35% T8% 0.2%
horiz. x EE%——W - —— Y (4 -10.45 182 831 236 338 X
stress — 228 B30 583 363 -8.59] 133 756 24.7 355 -7.89
FEMILEM 0.87 100 115 0.57 0.32 0.73 0.91 105 105 053
x 19.1% 0.0% 2.7% 0.0% 0.7% A7.4% 27% 0.4% 0.1% 0.6%
horiz. z 282 130  50.65 375 -10.45 101 84.9 62.05 033 =]
stress FEM 228 150 583 =363 B.59 5389 749 ~ 583 083 71
FEMILEM 0.81 1.00 1.15 0.7 0.82 0.53 0.88 0.96 1.00 0.81
x A9.7% 0.0% 2.7% 0.0% 0.7% 16.7% 35% 10% 0.6%  0.6%]
vertical y TEM 120 425 1123 315 2855 58.9 138 3505 277 254,
strain FEM 147 422 o398 312 271 16.6 823 286 215 246
123 — 038 085 039 — X ~ 028 0.60 0.73 095 0.97]
x ~ 2.4% 0.6% 11.1% 03%  1.3% 338% ~50%  93%  02% 0.8
horiz. x LEM 551 183 -1475 <123 -167 487 128 -1225 -101 157
strain 430 186 136 121 =150 39 134 883 -102 144
[ FEMILEM 0.78 1.02 0.92 0.98 0.90 0.81 1.05 0.80 101 0.92 !
X 22.0% 0.5% 2% 0.3% 3% A57% 1% 437 32%, 2.8% | [
horiz. z LEM 551 183 -147.5 -123 -167 66 138 174 634 -138 l
strain FEM 431 ~ 186 -137 -121 150 163 130 ~ 168 -61.9 -123
FEMILEM 078 1.02 0.33 088 030] 0% 0.92 0.97 ~ 038 0393 ‘
X -21.8% 0.5% 1.9% 0.4% 3.1% -8.0% 15% -11% 0.3% 2.7% [
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3.5.2.6 Summary of three-dimensional results comparison.

The results of interest for several three-dimensional finite element models have been
presented in the preceding sections. The box-type finite element models are reasonably
simple to generate and predicted stresses and strains very well in each configuration. Vertical
displacements were predicted well only in the models with infinite elements at the
boundaries. ’

The cylindrical-type model predicted stresses quite well, vertical displacements fairly
well, and was inconsistent in strain predictions. The cylindrical-type models with infinite
elements predicted some results better than the fixed boundary model but surprisingly over-
predicted vertical displacements. This model type is not recommended for further
development due to difficulty in generating acceptable configurations of infinite elements at
the boundaries.

A simple application of the spherical-type mesh for a single layer system provided
excellent agreement with the Layered Elastic Method. This analysis also provided a
straightforward example to demonstrate the effect of nodal-averaged element quantities such
as stress and strain at a free surface. In this case, the predicted nodal-averaged values were

less than the actual values.

The spherical-type mesh was applied to the baseline three-layer pavement system using
three mesh and boundary configurations. The mesh with perfectly radial infinite elements
produced an overly stiff system, as expected. The two meshes with consistent infinite
element configurations (horizontal layers) produced very acceptable predictions, considering
the caveat regarding free-surface stress and strain predictions.

Overall, the three-dimensional finite element models predicted displacement, stress, and
strain in the pavement system with a fidelity comparable to the two-dimensional models and
generally acceptable when compared to the Layered Elastic Method. The box-type model
and spherical-type models are reasonable candidates for further investigation and application.




Chapter 4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Although the analytical models considered in this study were rather simple, several
conclusions may be drawn from the effort. Firstly, the primary conclusion must be that the
finite element method, properly applied, can model the flexible pavement system to produce
excellent agreement with the more prevalent modeling technique of the Layered Elastic
Method. In addition, several considerations as to proper modeling were illustrated via the
parameter studies conducted using the two- and three-dimensional models. For example, the
importance of the boundary locations and conditions was demonstrated by evaluating the
convergence of the key results as the boundary conditions were changed. This investigation
indicated that the boundaries should be modeled with infinite elements to produce the best
agreement with the LEM results. The effect of mesh refinement and mesh type was generally
shown to be small, thus reasonable meshes can be utilized. A brief investigation of the “no
tension” option for the linear elastic material model indicated that this was not a usefil option
for this type of analysis.

The three-dimensional finite element models predicted results to a similar level of
accuracy as the two-dimensional models. Several mesh and boundary configurations were
investigated and also indicated that infinite element boundaries, properly applied, can
improve the predictions.

42 RECOMMENDATIONS

At this stage, it is recommended that the development of the analytical model proceed
methodically toward inclusion of nonlinear interface behavior, nonlinear material properties,
and more general three-dimensional loading. It is further recommended that these
. enhancements be implemented and investigated in relatively small steps, i.e., not changing
more than one parameter at any particular stage. For example, non-bonded interface behavior
or complex nonlinear material models can be investigated separately using two-dimensional
models before proceeding to inclusion in three-dimensional models.

It is also recommended that finite element modeling be applied to one or more typical
pavement material laboratory tests to calibrate the material model.

Finally, it is recommended that a detailed long-range plan for investigation and model
development be determined with a goal of developing a detailed analytical model for flexible
pavement design and analysis.
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